INTRODUCTION

Jarcho-Levin syndrome is a rare genetic malformation of vertebra and ribs. In this syndrome there are multiple segmentation defects of vertebra and multiple rib malformations. Sprengel shoulder deformity is elevation of shoulder joint due to upward displacement of scapula. These children have short neck, short trunk, scoliosis and crab like ribs, including crowding of ribs. This short neck and short trunk deformity is diagnosed by clinicoradiological characteristics. This syndrome was first described in 1938 by Jarcho and Levin.¹

This syndrome is classified into subtypes i.e., spondylothoracic dysostosis and spondylocostal dysostosis. Infants of Jarcho-Levin syndrome often suffer from repeated respiratory infections present since birth. This child was the first child of a non consanguinously married couple.

On examination, child was dyspneic, febrile with elevated pulse 100/mm, tachypnoea respiratory rate 60/min, and chest indrawing. Mild pallor was present. There was no cyanosis. Anthropometric measurements revealed protein energy malnutrition (PEM) Grade II as per Indian Academy of Pediatrics (IAP) classification.²

The child had low set ears and wide nasal bridge. Musculoskeletal examination revealed upward displacement of right scapula, scoliosis, and crowding of ribs (Figure 1). Respiratory system examination revealed decreased breath sounds and coarse crepitations over right supraclavicular, right infraclavicular and interscapular regions.

Laboratory investigations revealed haematological parameters to be within normal limits. Chest radiograph showed upward displacement of scapula, crowding of ribs and malformed ribs.

CASE REPORT

A 4-year-old female child presented with fever, cough, breathlessness and chest indrawing of eight days duration. There was history of repeated respiratory tract infections present since birth. This child was the first child of a non consanguinously married couple.

On examination, child was dyspneic, febrile with elevated pulse 100/mm, tachypnoea respiratory rate 60/min, and chest indrawing. Mild pallor was present. There was no cyanosis. Anthropometric measurements revealed protein energy malnutrition (PEM) Grade II as per Indian Academy of Pediatrics (IAP) classification.³

The child had low set ears and wide nasal bridge. Musculoskeletal examination revealed upward displacement of right scapula, scoliosis, and crowding of ribs (Figure 1). Respiratory system examination revealed decreased breath sounds and coarse crepitations over right supraclavicular, right infraclavicular and interscapular regions.

Laboratory investigations revealed haematological parameters to be within normal limits. Chest radiograph showed upward displacement of scapula, crowding of ribs and malformed ribs.
on right side with “crab like appearance” (Figure 2).

Computed tomography (CT) of thorax showed unsegmented vertebra (block vertebra) involving T1 to T5 vertebra, hemivertebrae involving T1 to T3, crowding and deformity of second, third and fourth ribs on right side with high position of right scapula. (Figures 3, 4, 5 and 6).

Ultrasonography of abdomen and echo-cardiogram were normal. Karyotyping study was normal. This child was treated for respiratory infection and surgical correction at a later date was advised.

DISCUSSION

Jarcho-Levin syndrome is a rare genetic disorder with autosomal dominant (AD) or autosomal recessive (AR) inheritance. The gene involved in this syndrome is delta-like protein 3 (DDL3) on chromosome 19 at 19q13, and mesenderm posterior protein 2 (MESP2) gene located on chromosome 15 at 15q26.1. The small size of the thorax in newborns frequently leads to respiratory compromise and death in infancy. Some rare variants with survival into adulthood have also been described.

This syndrome is found more frequently in people in Spanish origin. Prenatal diagnosis by ultrasonography is helpful in early detection. Type 1 (spondylothoracic dysostosis) is the severe form characterised by severe spine involvement and respiratory failure and it is AR. Type II (spodylocostal dysostosis) is a mild form, has AD inheritance and may not be diagnosed in utero. They have near normal longevity. Males and females are equally affected in both types.

Babies with this syndrome are usually born of a consanguinous marriage, but this was not so in our case. Affected children usually present with chest deformity or severe lung infections. This patient presented with repeated respiratory...

Figure 1: Clinical photograph showing elevated right shoulder with deformity of spine and upper back.

Figure 2: Chest radiograph (antero-posterior view) shows segmentation anomaly involving upper thoracic vertebrae. Right 1st rib appears hypoplastic with crab like deformity of the 2nd, 3rd, 4th and 5th ribs on right side. The right scapula is at an elevated level compared to the left.
infections and Sprengel deformity of right side. External features of Jarcho-Levin syndrome are dysmorphic facies such as low set ears, wide nasal bridge and long philtrum. Our patient had two of these three features.

Jarcho-Levin syndrome is primarily characterized by short neck, short trunk and a narrow thorax due to multiple rib (crab-like or fan-like radiation of the ribs) and vertebral anomalies including butterfly vertebrae, hemivertebrae, fused vertebrae, hypoplastic vertebrae.

Jarcho-Levin syndrome is very rare. Our patient had both Jarcho-Levin syndrome and Sprengel deformity. Very few such cases are reported in the literature. These cases can be diagnosed prenatally by three-dimensional ultrasonography and measurement of nuchal thickness.

Radiological features such as multiple vertebral deformities, abnormal ribs and elevated scapula are recognised by radiographs and CT. Most cases reported in the literature have Springel deformity on the left side. Our patient had upward displacement of right scapula, which is rare.
Jarcho-Levin syndrome may be associated with hydrocephalus, renal anomalies, facial dysmorphism, complex congenital heart disease, limb and digit anomalies, hernias, neural tube defects and anomalies of anal opening, urinary tract and uterus. Of these additional features, our patient had only dysmorphic facial features.

This case of Jarcho-Levin with Sprengel deformity is being reported because of the rarity of this combination. Paediatricians should be aware of this disorder. The present case is atypical in that the Sprengel deformity is located on the right side.

REFERENCES

