Correspondence:
The prevalence of A\textsubscript{2} and A\textsubscript{2}B subgroups in blood donors at a tertiary care teaching hospital blood bank of Rayalaseema region: a pilot study

Polymorphisms in the genes coding for A gene leads to subgroups of A. No published data regarding the prevalence of subgroups of A blood group in Andhra Pradesh, India is available. The importance of subgrouping is that the A antigens in various subgroups may differ both quantitatively and qualitatively1. Some individuals with blood groups A\textsubscript{2}, A\textsubscript{3}, A\textsubscript{a}, A\textsubscript{ai}, A\textsubscript{B} etc., have anti-A\textsubscript{1} antibodies and may present problems in blood grouping.

At our center, the typing of A subgroup of all blood donors was done using commercial anti A\textsubscript{1} lectin, anti-A and anti-AB antisera as per the manufacturer’s instructions. On analysis of a total of 5,505 blood groupings over a period of one year, 1,486(27\%) individuals had A antigen. Of these, 1,137 (20.7\%) were typed as A group and 349 (6.3\%) as AB group based on the presence of associated B antigen. Of the 1,137 A group individuals, 1,090(95.9\%) had A\textsubscript{1} antigen (subgroup A\textsubscript{1}) and the rest 47(4.1\%) had no detectable A\textsubscript{1} antigen (subgroup A\textsubscript{2}). Similarly among the 349 AB group individuals, 282(80.8\%) had A\textsubscript{1} antigen (subgroup A\textsubscript{1}B) and 67(19.2\%) had no detectable A\textsubscript{1} antigen (subgroup A\textsubscript{2}B). The number of individuals who lack A\textsubscript{1} antigen is less among A group individuals in contrast to AB group individuals and this difference was found to be statistically significant (p<0.0001). This may be due to the recessive nature of A\textsubscript{2} gene compared to A\textsubscript{1} gene and requirement of a single A\textsubscript{2} gene and a B gene to develop as A\textsubscript{2}B blood group phenotypically and two A\textsubscript{2} genes or one A\textsubscript{2} gene and one O gene to develop as A\textsubscript{2} blood group. Some postulate the presence of a strong B gene that would suppress A\textsubscript{1} antigen activity.2 No other subgroups of A could be detected in the present study due to the small number of donors phenotyped for subgroups of A. Similar results were obtained in other studies from Karnataka3 and Japan.4 By including a much larger population, the frequency of other A subgroup antigens can also be estimated. In the present study, the prevalence of A\textsubscript{2} and A\textsubscript{2}B sub groups was found to be 0.85 percent and 1.21\% in blood donors respectively.

REFERENCES

2. Voak D, Lodge TW, Reed JV. A possible explanation for the expression of A\textsubscript{2}B phenotypes observed in some populations. Vox Sang 1970;18:471-4.

I.S. Chaitanya Kumar,
A. Vashovardhan,
B. Suresh Babu,
Anju Verma,
K.V. Sreedhar Babu,
DS Jothi Bai,
Department of
Immuno Haematology and Blood Transfusion,
Sri Venkateswara Institute of Medical Sciences, Tirupati.

Received: 31 January, 2012.