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INTRODUCTION

Diabetes mellitus (DM) is a metabolic‑cum‑vascular 
disorder of  various aetiologies which is characterised 
by chronic hyperglycaemia resulting from variations in 
insulin secretion, insulin action or both.[1] Its prevalence 
is rapidly and progressively rising due to the increase in 
average life expectancy, growing prevalence of  obesity 
and westernisation of  lifestyles in developing countries.[2,3] 
Individuals with diabetes have a two‑to‑four‑fold increased 
risk of  developing cardiovascular disease (CVD) compared 
with non‑diabetic individuals[4,5] and are a major contributor 
to morbidity and mortality among patients with type 2 
DM (T2DM).[6] Therefore, the reduction of  cardiovascular 
risk is vital in people with type 2 diabetes.

CARDIOVASCULAR DISEASE RISK IN TYPE 2 
DIABETES MELLITUS

Patients with T2DM have several traditional and 
non‑traditional risk factors which contribute to their 
CVD risk apart from the presence of  diabetes itself. The 
traditional risk factors include the presence of  obesity, 
cigarette smoking, physical inactivity, hypertension 
and dyslipidaemia.[7] Other non‑traditional risk factors 
present in patients with T2DM include elevated levels 
of  homocysteine, high sensitivity C‑reactive protein 
(hs‑CRP), fibrinogen and lipoprotein (a). A synergism is 
said to result between hyperglycaemia with other CVD 
risk factors. Improved glycaemic control is known to 
reduce the cardiovascular complications in patients with 
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of  systemic insulin sensitivity and protection against 
endothelial dysfunction.[16]

The most important antiatherogenic effect of  HDL is 
contributed by its RCT which takes place in three stages. 
The first stage involves efflux of  cellular cholesterol to 
HDL which is mediated by three known intracellular 
cholesterol transporters, which are ATP‑binding cassette 
transporter A1, ATP‑binding cassette transporter G1 and 
scavenger receptor class B type I. The second step involves 
esterification of  cholesterol in HDL to cholesteryl esters 
by LCAT, thereby creating a concentration gradient for 
uptake of  more cholesterol into HDL. In the third stage, 
the HDL molecule with CE in its core is carried to the liver 
where CE is finally excreted into bile.

HDL proteins important for its RCT function are thus 
apoA‑I, LCAT and CETP. Further, this efficiency is 
dependent on the function of  apoA‑I. ApoA‑I, the major 
HDL‑associated protein, consists of  243 amino acids[17] 
and is encoded by apoA gene located on chromosome 
11.[17] ApoA‑I structure–function relationship has been 
studied and has shown a decreased capacity of  apoA‑I 
mutants in promoting cellular cholesterol efflux. Mutations 
in apoA‑I affect the secondary and tertiary structure of  
the C‑terminal domain of  apoA‑1 and thus the cholesterol 
efflux capacity of  HDL. These mutations include 
Pro165 → Arg,[18] Arg173 → Cys[19] and Leu141 → Arg.[20] 
Two other natural variants of  apoA‑1 with the C‑terminal 
mutations (Glu198 → Lys and Glu235 → 0) show 
differential effects. While Glu235 → 0 was shown to 
have a 54% reduced ability to efflux cholesterol (94),[21] 
Glu198 → Lys did not affect cholesterol efflux function of  
apoA‑I (93).[18] The apoA‑IMilano dimer has an increased 
ability to promote efflux from macrophages and Fu5AH 
compared to wild type.[22]

Human LCAT (EC 2.3.1.43) is a 63‑kDa lipoprotein‑
associated enzyme consisting of  416 amino acids. It is 
encoded by LCAT gene located on 16q22. LCAT gene 
is a 4.5‑kb long and contains 6 exons comprising a 
1.5‑kb coding sequence.[23] It is synthesised in the liver 
and to a small extent in other tissues, such as brain and 
testes.[23] LCAT is secreted into the plasma where it 
circulates reversibly bound to lipoprotein particles or in a 
lipid‑free form.

LCAT is involved in the esterification of  free cholesterol 
to cholesteryl esters in circulating plasma lipoproteins, 
especially in HDL.[23] It is capable of  binding lipids directly. 
However, the reaction requires activation by exchangeable 
apoproteins mainly apoA‑I. The regions in apoA‑1 associated 

DM.[8] Universal guidelines recommend that diabetes 
should be considered a CVD risk equivalent and that 
intensive multifactorial intervention is required to treat all 
cardiovascular risk factors.[9]

DYSLIPIDAEMIA IN TYPE 2 DIABETES 
MELLITUS

Among the traditional risk factors, dyslipidaemia is 
more frequently present in patients with diabetes than 
age‑ and gender‑matched non‑diabetic individuals.[10,11] 
Diabetic dyslipidaemia is most often characterised by high 
plasma triglyceride (TG) concentration, low high‑density 
lipoprotein‑cholesterol (HDL‑C) concentration and 
increased concentration of  small dense low‑density 
l ipoprotein‑cholesterol (LDL‑C) levels. [12] This 
dyslipidaemia is a result of  elevated free fatty acid release 
from insulin‑resistant fat cells.[12] The excess free fatty 
acids get converted to TGs in the liver, whose increased 
production, in turn, stimulates very LDL‑C (VLDL‑C) 
and apolipoprotein B synthesis. The reduced activity of  
lipoprotein lipase in the insulin‑deficient state may also 
contribute to elevated TG and VLDL‑C levels.[12] The 
consequence of  these elevated lipid fractions is increased 
small dense LDL‑C levels and decreased HDL‑C.

DIABETES MELLITUS AND HIGH‑DENSITY 
LIPOPROTEIN‑CHOLESTEROL

Studies have shown a positive correlation between LDL‑C[13] 
and CVD and an inverse correlation between HDL‑C and 
CVD.[14] HDL‑C is considered as a protective molecule 
against atherosclerosis. The potent antiatherogenic 
properties of  HDL particles originate from their unique 
composition and structure, i.e. HDL‑associated proteins.

FUNCTIONAL HIGH‑DENSITY LIPOPROTEIN

Proteins that are associated with HDL include 
apolipoproteins (apoA‑I, apoA‑II, apoA‑IV, apoE and 
apoC); lipid transfer proteins including cholesterol 
ester transfer protein  (CETP) and phospholipid (PL) 
transfer protein; enzymes (lecithin–cholesterol 
acyltransferase (LCAT), glutathione peroxidase, 
paraoxonase and platelet‑activating factor‑acetylhydrolase) 
and other minor proteins such as apoD and apoM. The 
lipids include 3%–15% TGs, 26%–46% PLs, 15%–30% 
cholesterol esters (CEs) and 2%–10% cholesterol.[15]

The antiatherogenic functions of  HDL include reverse 
cholesterol transport (RCT), anti‑inflammatory role and 
antioxidant role.[16] Other antiatherogenic functions of  
HDL include antiplatelet, antithrombotic and regulation 
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with LCAT activation is the helix 144–165 with secondary 
contribution by helix 166–186 region. It acts preferentially 
on the discoidal, nascent, pre‑β1‑HDL particles, containing 
apoA‑I, where it esterifies free cholesterol via α‑LCAT 
activity.[23] This esterification involves a transfer of  the 
sn‑2 fatty acyl group of  phosphatidylcholine to the 3‑β 
hydroxyl group of  free cholesterol, forming a cholesteryl 
ester and lysophosphatidylcholine. The cholesteryl esters 
are then incorporated into the HDL particles, resulting 
in the formation of  the spherical, mature, α‑migrating 
forms of  HDL. LCAT plays an important role in the 
reverse cholesterol function, thus transferring excess free 
cholesterol from peripheral tissues to the liver for biliary 
excretion.

Cholesteryl ester transfer protein (CETP) is a glycoprotein 
responsible for the transfer of  cholesteryl esters from HDL 
to VLDL, LDL and intermediate‑density lipoprotein (IDL) 
in exchange for TGs. About two‑thirds of  cholesteryl esters 
from HDL are transferred to the liver by CETP, whereas the 
remaining one‑thirds are transferred by scavenger receptor 
class B type 1 (SR‑B1). It is composed of  476 amino 
acids with a molecular weight of  ~53 kDa.[24] Its structure 
resembles a banana‑shaped conformation composed of  
amino (N)‑and carboxy (C)‑terminal β‑barrels. A central 
β‑sheet lies between the two β‑barrels which is said to 
accommodate two CE molecules which is plugged by 
an amphiphilic helix ‘X’ (Glu465‑Ser476) present at the 
C‑terminus.[25] Mutations (linker insertion mutations, 
i.e., insertion of  two nucleotides) in the N‑terminal end at 
residues 48, 53, 165, 373 and 379 could impair lipid transfer 
activity of  CETP.[26]

PL transfer protein (PLTP) is a glycoprotein with 476 
amino acids and a molecular weight of  81 kDa synthesised 
in the placenta, pancreas, lung, kidney, heart, liver, skeletal 
muscle and brain.[27] PLTP‑mediated PL transfer between 
HDL subfractions converts HDL3 into larger HDL 
particles with loss of  apoA‑I leading to the generation 
of  nascent HDL particles which lead to its accelerated 
uptake by the liver. PLTP is also considered as a positive 
acute‑phase reactant with a role in the innate immune 
defence.[28]

OTHER PROTEINS

Paraoxonase
Paraoxonase‑1 (PON‑1) is a 45‑kDa glycoprotein 
composed of  355 amino acids and is encoded by PON 
gene located on chromosome 7 (q21.22).[29] PON‑1 
is synthesised in the liver and secreted into the blood 
where it is associated with apoA‑I of  HDL particles. 

Paraoxonase exhibits various types of  hydrolytic activities 
which include lactonase activity, arylesterase activity and 
organophosphatase activity. Associated with HDL, it 
exhibits antioxidant and antiatherogenic properties by 
inhibiting lipoprotein oxidation and inactivating the toxic 
peroxidation products (ox‑LDL) and also prevents their 
accumulation. Paraoxonase by way of  its antioxidant 
nature also protects LDL and HDL against oxidative 
damage and prevents the formation of  atherogenic 
ox‑LDL molecules.[29] It enhances cholesterol efflux 
from macrophages through HDL. PON‑1 also inhibits 
the transformation of  monocytes into macrophages and 
thus inhibits the process of  foam cell formation and thus 
reduces atherosclerotic plaques.[29]

Platelet‑activating factor‑acetylhydrolase
Platelet‑activating factor‑acetylhydrolase (PAF‑AH) 
belongs to a small family of  related phospholipases A2 
that hydrolyse the sn‑2 acetyl residue of  platelet‑activating 
factor and inactivates it. Platelet‑activating factor is an 
important inflammatory mediator which activates cells at 
picomolar concentration.[30] Macrophages contribute to the 
largest amount of  circulating enzyme. About two‑thirds of  
the plasma enzyme is associated with LDL, whereas only 
one‑third is associated with HDL. The HDL‑associated 
PAF‑AH is not capable of  hydrolysing PAF owing to the 
low levels of  PAF present under normal physiological 
conditions. This has been attributed also to the physical 
location of  PAF‑AH in HDL molecule which limits the 
access of  PAF to the enzyme's active site.[31] The enzyme 
rapidly transfers between LDL and HDL particles, and 
since only about one in a thousand LDL particles carries 
a molecule of  PAF‑AH, HDL may function to distribute 
the enzyme among individual lipoprotein particles. By 
inactivating PAF, PAF‑AH suppresses inflammatory 
signalling and prevents the foam cell formation, thereby 
decreasing atherogenicity. This is brought about by removal 
of  the oxidatively truncated PLs which prevent oxidative 
modification of  the lipoprotein particles which are taken 
up by vascular cells to initiate foam cell formation.[32]

Glutathione peroxidase
Glutathione peroxidases (GPXs) are a group of  
important enzymes possessing antioxidant property 
through glutathione involved in neutralising peroxides 
involved in oxidative damage to cells. The type of  
GPXs identified include cytosolic (cGPX or GPX1), 
gastrointestinal (GI‑GPX or GPX2), plasma (pGPX or 
GPX3), PL hydroperoxide (PHGPX or GPX4) glutathione 
peroxidase, GPX5 and GPX6.[33] GPX4 is associated with 
HDL and LDL.[34] Activation of  GPX4 has been identified 
as an important anti‑inflammatory target.[35]
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Acute‑phase response proteins
Certain positive acute‑phase proteins elevated during 
acute inflammation constitute a class of  HDL‑associated 
proteins. These include serum amyloid A, fibrinogen, 
alpha‑1‑acid glycoprotein 2 and alpha‑2‑HS glycoprotein. 
On the other hand, apoproteins such as apoA‑I and 
apoA‑IV are reduced during inflammation and can be 
considered as negative acute‑phase response proteins.

Complement components
Complement components such as complement 3 (C3)‑ and 
C4b‑binding protein associate with HDL. While C3 is 
an activator of  the classical and alternative activation 
pathways, C4 is an activator of  the classical pathway. 
C9, a subunit of  the membrane attack complex, is also 
associated with HDL. Vitronectin, a protein which is an 
inhibitor of  the membrane damaging effect of  cytolytic 
pathway, also associates with HDL.

Serine proteinases
Serine proteinases serve as regulators of  important 
processes such as inflammation, coagulation, angiogenesis 
and matrix modelling. Some of  these serine proteinases 
such as alpha‑1‑antitrypsin circulate exclusively in HDL, 
whereas alpha‑2‑antiplasmin circulates partly in HDL. 
HDL also carries proteins such as inter‑alpha‑trypsin 
inhibitor heavy chain H4 and bikunin which are 
components of  the inter‑alpha‑trypsin inhibitors. 
Similarly, HDL carries proteins such as haptoglobin‑related 
protein, kininogen‑1, prothrombin, angiotensinogen and 
procollagen C‑proteinase enhancer‑2.[36,37]

Other minor proteins
HDL acts as a carrier for other proteins having diverse 
functions such as retinol‑binding protein, serotransferrin, 
transthyretin, hemopexin, albumin, Vitamin D‑binding 
protein, platelet basic protein, Wnt signalling molecules 
and progranulin.[38]

DYSFUNCTIONAL HIGH‑DENSITY LIPOPROTEIN

In systemic inflammatory diseases such as diabetes, obesity, 
metabolic syndrome, rheumatic diseases and familial 
hypercholesterolemia, these antiatherogenic properties 
of  HDL are altered.[15,39,40] This results in change in HDL 
from antiatherogenic to proatherogenic. The National 
Institutes of  Health (NIH) described altered HDL 
as ‘dysfunctional’ with regard to the increased risk of  
developing atherosclerosis.[40] Increased CVD has been 
reported in individuals with high levels of  HDL, thus 
suggesting that besides the quantity, the composition and 
the functional behaviour of  HDL play a significant role in 
contributing to the CVD risk.[15] Dysfunctional HDL has 
been shown to correlate clinically with increased risk of  
atherosclerosis.[40,41] Thus, the quantitative measurement of  
HDL may not accurately represent the protective effects 
of  HDL cholesterol.

DIABETES AND HIGH‑DENSITY LIPOPROTEIN

Studies have shown diabetes to have an effect on both 
the quality and the quantity of  HDL. These alterations 
are seen both in the lipid component and in the protein 
component [Table 1].

LIPID CHANGES IN HIGH‑DENSITY 
LIPOPROTEIN ASSOCIATED WITH DIABETES 
MELLITUS

The qualitative changes in lipids are also accompanied by 
kinetic changes occurring in the lipidome of  HDL. The 
lipid alterations in HDL include an increase in TG content 
along with a decrease in PL content.[46] In patients with 
diabetes, insulin deficiency leads to increased lipolysis 
which, in turn, leads to increased concentration of  free 
fatty acids returning to the liver which are packed in VLDL 
as TGs.[57] Insulin deficiency further facilitates this process 

Table 1: HDL proteins and functional alterations in type 2 diabetes mellitus
HDL protein Normal function Alteration in type 2 diabetes 

mellitus
Function in type 2 diabetes 
mellitus

Apoprotein A‑I Cholesterol efflux Oxidative modification,[42] glycation[43] Impaired cholesterol efflux[44]

Apoprotein E Interferes with LDL binding to proteoglycans in the 
vessel wall[45]

Decreased[46] Proatherogenic[46]

Apoprotein M Increases endothelial NO production, inhibits 
monocyte recruitment into intima

Decreased[46] Proatherogenic[46]

PLTP Phospholipid transfer between HDL subfractions 
converts HDL3 into larger HDL particles[38]

Increased[47,48] Proatherogenic[49]

CETP Transfer of cholesteryl esters from HDL to VLDL, LDL 
and IDL in exchange for triglycerides[38]

Increased[50‑52] Proatherogenic[52]

LCAT Esterification of free cholesterol to cholesteryl esters 
in circulating plasma lipoproteins, especially HDL[23]

Levels increased, activity 
decreased,[53] glycation[54]

Proatherogenic[54,55]

PON‑1 Inhibits lipoprotein oxidation and inactivating the 
toxic peroxidation products[29]

Decreased[46] Pro‑oxidant[56]

HDL=High‑density lipoprotein; PLTP=Phospholipid transfer protein; CETP=Cholesterol efflux transfer protein; LCAT=Lecithin‑cholesterol transfer 
protein; PON‑1=Paraoxonase‑1; LDL=Low‑density lipoprotein; VLDL=Very‑low‑density lipoprotein; IDL=Intermediate‑density lipoprotein
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due to decreased catabolism of  apoB‑100 which, in turn, 
aides VLDL synthesis. Increased VLDL drives exchanges 
of  TGs in VLDL for cholesteryl esters present in HDL 
due to increased activity of  CETP.[58,59]

The kinetic changes include an increase in the catabolism 
of  HDL. A decrease in cholesteryl esters is measured 
clinically as a decrease in HDL‑C levels. The TG in HDL 
is a substrate for plasma lipases and hepatic lipase which is 
thus responsible for the increased catabolism of  HDL.[60,61]

CHANGES IN PROTEINS ASSOCIATED WITH DM

Apoproteins
Hyperglycaemia seen in patients with DM can cause 
glycation of  HDL proteins and their oxidative 
modification [Table 1].[62,63] Oxidative stress seen in patients 
with DM has been shown to cause oxidative modification 
of  both apoA‑I[42] and apoA‑II.[64] Oxidation of  methionine 
residue at 148 impairs the reverse cholesterol function 
of  HDL.[44] Glycation of  apoA‑I has been shown to be 
associated with severity of  CAD and plaque progression 
in patients with T2DM.[43]

ApoA‑II is the second most predominant apoprotein in 
HDL. DM has been shown to modify the proteoforms of  
HDL as well as cause oxidative modification of  methionine 
residues. The proportion of  oxidised to native forms of  
apoA‑II was shown to be increased in patients with DM. 
Oxidative modification of  the methionine residues leads 
to alteration in the helical structure of  the protein which, 
in turn, affects its binding to the lipid. This altered lipid 
binding has been shown to decrease the lipid‑clearing 
ability of  HDL.[65]

Using proteomic analysis, Gordon et al. showed changes 
in 7 of  the 45 proteins in HDL. Changes were noted in 
apoA‑II, apoE and paraoxonase. The authors noted a 
five‑fold decrease in peptide counts of  apoE [Table 1].[46] 
ApoE has been shown to be associated with antiatherogenic 
property of  HDL as it interferes with LDL binding 
to proteoglycans in the vessel wall.[45] This could thus 
prevent atherosclerosis. A decrease in apoE in larger HDL 
molecules could thus be proatherogenic by facilitating LDL 
binding to proteoglycans in the vessel wall and promoting 
atherosclerosis.

Another antiatherogenic apoprotein altered in DM is apoM.[46] 
ApoM was reported to enhance sphingosine‑1‑phosphate 
content of  HDL. Sphingosine‑1‑phosphate has been 
shown to induce endothelial nitric oxide production and 
thus favour arterial vasodilatation.[66] It has also been 

shown to inhibit monocyte recruitment into the intima. 
Both these effects contribute to the antiatherogenic effects 
of  apoM. A decrease in apoM in patients with DM could 
thus contribute to the proatherogenic nature of  altered 
HDL [Table 1].

Lipid transfer proteins
PLTP is considered to be proatherogenic. A positive 
association between PLTP activity and CAD has been 
shown in humans.[67] This is supported by studies in animal 
models which show a proatherogenic effect of  PLTP.[49] 
Increased PLTP levels have been shown in patients with 
T2DM [Table 1].[47,48]

The lipid transfer activity of  CETP has been considered to 
be proatherogenic considering the fact that the molecules, 
i.e., HDL, and other lipoproteins, i.e. VLDL, LDL and IDL, 
are subjected to remodelling by the activity of  hepatic lipase 
which is enhanced in the presence of  insulin resistance 
seen in patients with T2DM to more atherogenic particles, 
i.e., the smaller and denser HDL particles which are cleared 
from circulation by the liver receptors or by the kidney and 
the small dense LDL particles which are not taken up by 
LDL receptors but can be taken up by the macrophages 
in the subendothelial spaces, thereby promoting plaque 
formation [Table 1]. The CE resulting from action of  
LCAT in HDL is thus channelled to other lipoproteins 
rather than being taken up by the liver through SR‑B1 or 
LDL receptors.[50‑52]

LCAT is crucial for the maintenance and maturation of  
normal HDL metabolism. LCAT activity has been shown to 
be decreased in patients with T2DM along with an increase 
in LCAT levels.[53] A study showed that glycaemia‑induced 
glycation of  HDL is a strong predictor of  decrease in 
LCAT activity in patients with DM [Table 1].[54]

Other proteins
HDL from diabetics was deficient in their ability 
to promote endothelial progenitor cell‑dependent 
endothelial repair, increase endothelial nitric oxide 
expression and produce endothelium‑dependent relaxation. 
These defects were associated with raised HDL lipid 
peroxidation and MPO content and could be improved 
with niacin therapy.[55] Antioxidative activity of  small 
dense HDL (HDL3) has been shown to be defective 
as evidenced by lower paraoxonase/arylesterase 1 
(PON‑1) and platelet activating factor acetylhydrolase 
(PAF‑AH) activities in diabetic patients compared to 
controls.[68] A recent study conducted in young female 
patients with type 2 diabetes showed them to have a higher 
concentration of  inflammatory molecule serum amyloid A 
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in the HDL fractions HDL2 and HDL3 along with higher 
PON‑1 activity and CETP activity providing evidence of  
dysfunctional HDL due to inflammation.[56] This suggests 
that variation in HDL features may contribute to the loss 
of  the cardioprotective properties in pre‑menopausal 
women with T2DM.

HIGH‑DENSITY LIPOPROTEIN AS TARGET FOR 
TREATMENT

The target for treating diabetic dyslipidaemia is a reduction 
of  LDL‑C levels. For this purpose, statins are the drugs 
of  choice. Apart from achieving target lipid levels, statins 
have been shown to have a beneficial effect on both 
HDL quantity and quality. Statins have a beneficial role in 
improving the RCT function of  HDL by increasing the 
cholesterol efflux capacity.[69] However, the results with 
respect to the effect of  statins on apoA‑1 levels have not 
been consistent.[70‑72]  While a few studies have shown the 
beneficial effect when used alone, others have shown statins 
to be effective in increasing apoA‑1 levels only when used in 
combination with other agents (carnitine and ezetimibe)[71,72] 
some studies observed no change.[73,74] The differential 
results can be attributed to the dose of  statin used, the 
duration as well as the number of  subjects studied. Similarly, 
the results are mixed with respect to the effect of  statins 
on LCAT activity with a few studies showing a decrease 
in activity,[55] whereas still others observed no change.[75]

Although statins help achieve target lipid levels in 
majority of  the patients, some patients fail to achieve 
LDL‑C targets. Such patients benefit from addition of  
non‑statin drugs.[76] These drugs have an additional effect 
on HDL‑C levels. Some of  the drugs which target HDL 
include fibrates which also decrease serum TG levels 
along with increasing HDL‑C levels through activation 
of  peroxisome proliferator‑activated receptor‑α and are 
useful in patients with mixed dyslipidaemia with residual 
CVD risk.[76]  Cholesterol ester transfer protein (CETP) 
inhibitors which inhibit CETP, an enzyme involved in 
exchange of  cholesterol esters for TGs between HDL and 
VLDL/LDL is another drug target.[77] Niacin has been 
shown to be useful when used alone or in combination 
in patients with T2DM in a meta‑analysis. However, close 
monitoring of  fasting blood glucose is required as it tends 
to increase fasting blood glucose (FBG) levels.[78] Thus, drug 
targets which can modify the functions of  HDL rather 
than the quantity could be useful in decreasing CVD risk 
in patients with DM.

Normal HDL molecule is antiatherogenic owing to its 
structural proteins which exhibit important functions such 
as reverse cholesterol function, anti‑inflammatory and 

antioxidant activities. DM is associated with modifications 
in some of  the important antiatherogenic proteins owing to 
the inflammatory and oxidative milieu along with elevated 
glucose levels which promote glycation of  the proteins, 
thereby converting them to proatherogenic molecules. 
Drugs targeting HDL proteins and thus its function could 
be of  use in decreasing CVD risk in patients with T2DM.
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