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OVERVIEW

In prokaryotes, eubacteria are typically grouped into two 
classes such as Gram‑negative and Gram‑positive bacteria 
based on their response to a Gram stain. Each group 
of  bacteria has a characteristic spectrum of  structural 
components and fundamental differences within the 
composition and organisation of  their respective cell 

walls. In Gram‑positive bacteria, plasma membranes 
are encapsulated by a multilayered, crosslinked polymer 
of  peptidoglycan (PG), whereas the PG is further 
surrounded by a monolayer in Gram‑negative bacteria.[1] 
Regarding the differences in cell envelope structure, these 
classified bacteria have differential susceptibility to a wide 
variety of  antimicrobial agents. However, Gram‑negative 

Gram‑negative bacteria show more drug‑resistant than Gram‑positive bacteria due to unique structural 
attribute and cause significant morbidity and mortality across the globe. Such characteristic structure is 
an organelle lipopolysaccharide (LPS) on the outer membrane (OM) of cell wall essential for growth and 
survival of bacteria. LPS is a major cell wall component formed by dedicated transenvelope multiprotein 
complexes that shield the underlying peptidoglycan layer and play a key role in host–pathogen interactions 
with the innate immune system. Moreover, which constitutes the surface-exposed molecules with lipid 
portion in the outer leaflet of the OM that able to show antibiotic resistance and also responsible for the 
variety of biological effects associated with bacterial sepsis.  LPS synthesis and structure are a conserved 
subject in infections during bacterial adaptive changes. Such changes ensue immune evasion, prolonged 
inflammation and augmented antibiotic resistance by working as molecular decoys which titrate the 
antimicrobials away from its intracellular antibiotic target. Herein, this review summarises the key features 
of LPS structure, function and biosynthesis. Moreover, it highlights the broad-spectrum conserved targets 
in the Raetz pathway without an alternative way for LPS biosynthesis vital for the development of novel 
therapeutic interventions against Gram-negative pathogens.
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bacteria are more intrinsically resistant to antibiotics than 
Gram‑positive bacteria; it leads to considerable morbidity 
and mortality across the globe.

The outer membrane (OM) of  the Gram‑negative 
bacteria is a lipid bilayer interspersed with proteins 
similar to the plasma membrane. The inner leaflet of  this 
membrane is comprised glycerophospholipids including 
primarily phosphatidylethanolamine, cardiolipin and 
lesser amounts of  phosphatidylglycerol, whereas the 
lipid of  its outer leaflet is composed of  amphiphilic 
glycolipids termed lipopolysaccharide (LPS) molecules. It 
is a predominantly potent activator of  the innate immune 
system of  animals and causes septic shock.[2] The unique 
structural characteristics are the essential factors for the 
selective permeability and barrier function of  the OM.[1] 
Specifically, LPS is to form a layer stabilised by divalent 
cations, and it facilitates an effective permeability barrier 
against detrimental molecules including antibacterial 
agents and also antimicrobial peptides.[3] Thus, the LPS 
became a central component of  the OM in Gram‑negative 
bacteria, and moreover, it commonly plays a vital role in 
pathogenesis in host organisms.[4]

The typical LPS is structurally distinguished with three 
parts, namely lipid A, core oligosaccharide and O antigen 
polysaccharide. In LPS, lipid A and core collectively form 
‘rough portion’ by lipooligosaccharides, while ‘smooth’ 
portion of  the LPS capped with O antigen. In which, 
lipid A portion is hydrophobic moiety embedded in the 
OM which helps in attaching LPS to the outer leaflet of  
the OM.[3]

Lipid A is a glycolipid core of  LPS and its lipid component 
of  an endotoxin is responsible for the toxicity of  
Gram‑negative bacteria in disease causing and death from 
Gram‑negative sepsis, an important cause of  human 
mortality and morbidity.[2] It is composed of  acyl chains 
connected to glucosamine backbone by ester and/or amide 
bonds. Hexa‑acylated lipid A induces sturdy inflammatory 
responses upon recognition by macrophages, monocytes 
and dendritic cells through the complex toll‑like receptor 4 
and myeloid differentiation factor 2.[5] Altering the lipid A 
acylation patterns, or substituting positively charged factors 
to the lipid A phosphate groups,[6] contributes protection 
against host innate immunity as well as diminishes the 
permeability of  the OM to antimicrobial peptides and 
dampening inflammatory responses by the host.[3,7,8]

The second portion is core oligosaccharide associated 
with lipid A, which maintains the integrity of  the OM; 
the rest of  the core comprises a group of  sugars which 

differs amongst species and even amongst strains of  the 
same species.[6] Core sugars phosphorylation is associated 
with enhanced membrane impermeability and resistance 
to antibiotics.[9] The core part acts as a mediator and 
ligand for the transport of  LPS to the OM and for the 
cystic fibrosis (CF) transmembrane conductance regulator 
protein, respectively.[10] O‑antigen polysaccharide or 
O‑antigen is linked to the core and possessed repeating 
oligosaccharide units in straight interaction with the 
external locale.[3,4]

O‑antigen polysaccharide is found with linear or branched 
type of  oligosaccharide units.[4] O‑repeating units are highly 
variable and involved in the formation of  huge number 
of  immunochemically different O‑specific serotypes.[11] 
Moreover, the O‑antigen contributes swimming, swarming 
motility and protection against oxidative stress and 
also aids in the evasion process from the host immune 
defenses, especially which evade the complement 
cascade.[12,13] Structurally and serologically distinct 
O‑antigen molecules were identified such as ‘A‑band’ or 
‘common polysaccharide antigen’, a homopolymer of  
d‑rhamnose. ‘B‑band’ or ‘O‑specific antigens’ another 
kind of  O‑antigens which show strong antibody response 
by immunogenic heteropolymers made up of  repetitive 
units of  different sugars.[14,15] The nature of  different cell 
composition including LPS of  bacteria naturally leads to 
disease progression and adaptation to the host milieu and 
remains persist the lifetime of  the patient, for example 
respiratory infections of  CF and gastric infections by 
Helicobacter pylori.[15]

The adverse side effects of  anti‑bacterial agents vary 
from regimen to the regimen. Noticeably, despite the 
drug resistance rates are increasing by fostering the 
development of  more resistant strains.[16] Consequently, 
a new focus has been required to fight against multidrug 
resistance bacteria by academics and clinicians with 
effective studies. Therefore, these potential problems 
must be reckoned with the triaging of  hits require a 
consideration of  chemical tractability for success of  
novel proof‑of  concept leads and breakthrough medicines 
against conserved drug targets.[17] Choosing molecular 
targets and computer‑aided drug designing aspects for 
new antibiotics seem to be a good basis to overcome these 
problems. In this perspective, LPS molecule has attained 
a great attention and became a wide spectrum therapeutic 
target for the development of  novel antimicrobial agents 
as its involvement in the diverse immunological properties 
and plays crucial roles in OM stability for cell viability. 
This review hence summarises parallelly the structural 
importance of  LPS molecule for the bacteria, biosynthesis 
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and contribution of  the therapeutic targets for drug 
discovery processes.

LPS‑BIOSYNTTHESIS

Lipid A‑biosynthesis
The constitutive enzymatic pathway of  lipid A biosynthesis 
present in virtually all Gram‑negative bacteria is viewed as 
a conserved and a variable component as it contains the 
intracellular and constitutive enzymes.[7] Literature study 
reported that the LPS biosynthesis was elaborated in 
detail elsewhere.[3,4,7,14,18] In brief, the lipid A is synthesised 
on the cytoplasmic side of  the inner membrane through 
a constitutive lipid A pathway. This lipid‑A pathway is 
comprised nine conserved enzymes. Each enzyme is 
encoded by a single‑copy structural gene in Gram‑negative 
bacteria for lipid‑A biosynthesis.[19] These nine enzymes 
synthesise the lipid‑A by their sequential catalytic 
mechanisms with the conversion of  the precursor 
UDP‑N‑acetylglucosamine into lipid A‑Kdo2, which is the 
essential component for the rest of  the core sugars which 
are appended from nucleotide sugar precursors through 
sequential glycosyl transfer reactions.[3,4,6] It is synthesised 
on the cytoplasmic side of  the inner membrane. Further 
diverse covalent modifications of  lipid‑A are occurred 
while transit from inner membrane to the outer leaflet 
of  the OM.[3,7] Phosphorylation of  the core sugars is 
associated with augmented membrane impermeability and 
drug resistance in microbes as well as is required for the 
LPS transport to the OM.[9,10]

The l ip id‑A genes  are  sequent ia l ly  fo l lowed: 
LpxA (UDP‑N‑acetylglucosamine acyltransferase), 
LpxC (UDP‑3‑O‑(R‑3‑hydroxyacyl)‑N‑acetylglucosamine 
deacetylase) and LpxD (UDP‑3‑O‑(R‑3‑hydroxyacyl) 
glucosamine N‑acyltransferase) are cytoplasmic 
so lub l e  p ro t e in s , [20 ‑22 ]  p e r i phe r a l  membrane 
proteins LpxB (Lipid‑A‑disaccharide synthase) 
and LpxH (UDP‑2,3‑diacylglucosamine‑specific 
pyrophosphatase);[23‑25] whereas the distal enzymes of  the 
pathway such as LpxK (Tetraacyldisaccharide 4’‑kinase), 
KdtA (3‑deoxy‑D‑manno‑2‑octulosonic acid (Kdo) 
transferase or WaaA), LpxL (Lipid A biosynthesis 
lauroyltransferase) and LpxM (Lipid A biosynthesis 
myristoyltransferase) are integral inner membrane 
proteins.[7,26‑29]

In Raetz pathway, non‑LpxL‑LpxM type enzymes 
such as LpxL, LpxJ (Kdo2‑lipid IVA 3’ secondary 
acyltransferase), LpxE (lipid A 1‑phosphatase), 
EptA (lipid A ethanolaminephosphotransferase), 
KdoH (3‑deoxy‑D‑manno‑octulosonic acid‑hydrolase), 

LpxF (lipid A 4’‑phosphatase) and LpxR (lipid A 
3‑O‑deacylase) are involved in KDO‑lipid‑A (tetraacylated) 
biosynthesis from KDO2‑lipid IVA. The active sites of  
these enzymes face the cytoplasmic surface of  the inner 
membrane and their water‑soluble co‑substrates are 
cytoplasmic molecules.[7]

Core‑oligosaccharide biosynthesis
After Kdo2‑lipid‑A, the inner core oligosaccharide 
is extended by sequential addition of  sugar residues 
from activated sugar‑nucleotide precursors by specific 
glycosyltransferases.[1] These enzymes are peripheral 
membrane proteins associated with the inner leaflet of  the 
plasma membrane. Transfer of  the first two Kdo residues 
of  the inner core is catalysed by a single, bifunctional 
enzyme called WaaA (formerly KdtA). KdsB, KdsA, 
“waa” gene such as waaP, waaC, waaF, waaA, waaZ, waaY, 
waaQ, waaG, waaB, waaO, waaR, waaU and waaL of  the 
central operon encode the enzymes catalysing each transfer 
essential for the core oligosaccharide biosynthesis.[1] The 
inhibition of  any initial enzyme of  the core biosynthetic 
pathway that affects the addition of  a main chain sugar and 
followed by the addition of  all subsequent sugars including 
the O antigen.

O‑antigen biosynthesis
Cytoplasmic membrane‑associated enzyme complexes 
synthesise the O antigen separately on a lipid carrier 
molecule C55‑undecaprenyl phosphate (Und‑P), which is 
a C55‑polyisoprenoid derivative embedded in the plasma 
membrane and acts as an acceptor for O antigen chain 
assembly.[1,11] An initiation step starts with transfer of  a 
sugar phosphate residue onto the lipid carrier (UndP) from 
a nucleotide‑activated donor (precursor) with forming a 
pyrophosphate linkage, and this lipid carrier is used for 
subsequent O antigen biosynthesis. Although the huge 
number of  O antigen structures have been characterised, 
only two types of  initiating enzymes were found such 
as WecA (a UDPGlcNAc: undecaprenyl‑phosphate 
GlcNAc‑1‑phosphate transferase), common initiating 
enzyme previously termed as Rfe and its homologues. It 
transfers a GlcNAc‑phosphate from UDP‑GlcNAc to 
UndP and forms UndPP‑GlcNAc, serves as an acceptor 
for the assembly of  the O chain backbone, composed of  
alternating GlcNAc and Gal residues.[30] Then, these linear 
polysaccharides are supposed to become Lewis antigens by 
the activity of  various fucosyltransferases and then forms 
lipid‑linked glycan.[31] However, the other types of  enzymes 
are WbaP family. Both of  these are integral membrane 
proteins with similar hydropathy profiles.[32] Due to the 
conservation of  the initiating reaction, O antigen biosynthesis 
offers an opportunity to develop inhibitors towards LPS.[1]
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The lipid‑linked glycan is then translocated to the 
periplasm and also polymerised by the proteins, 
namely Wzy, Wzz and Wzx acting as polymerase, 
chain‑length regulator and flippase, respectively. Finally, 
the O polysaccharide is transferred from undecaprenyl 
pyrophosphate (UndPP) onto the lipid A‑core by the O 
antigen ligase WaaL (O‑antigen ligase). The most of  the 
enzymes for O antigen assembly are encoded by cluster 
of  genes at the wb* (previously rfb) locus. These loci are 
highly polymorphic and so showed high diversity of  O 
antigen structures.[18,19]

Moreover, the synthesised O antigen is then exported 
by three pathways, namely Wzy‑dependent, ABC 
transporter‑dependent and synthase dependent pathway.[3,18] 
Subsequently, the synthesised and mature LPS molecule is 
transported across the periplasm and placed into the outer 
leaflet of  the OM by the conserved LPS transport (Lpt) 
pathway.[30,32‑34] Further, several proteins such as LPS export 
system proteins (LptC and LptA) and inner membrane 
protein (YhjD), OM proteins LptD‑E, YtfN, YfgH and 
YceK harbour and uphold the transfer of  LPS across the 
periplasm, then responsible for the correct insertion of  LPS 
in the outer leaflet.[3,34,35] The most of  all bacteria consist 
of  genes involved in O antigen biosynthesis are clustered 
in a single locus, which provides horizontal gene transfer 
and regulation of  O antigen synthesis.[19,30]

DRUG TARGETS

Lipid‑A drug targets
LpxA is a first enzyme target in the LPS synthesis of  
Gram‑negative bacteria for novel antibacterial drug 
discovery.[36] LpxA was reported as a potential target in 
different pathogens such as Acinetobacter baumannii and 
Moraxella catarrhalis[37,38] LpxA, LpxC LpxB and LpxD of  
lipid A synthesis are emerged as an attractive molecular 
targets.[17,39‑41] LpxC was identified as a paramount crucial 
drug target against several pathogenic bacteria such as 
Escherichia coli, Pseudomonas aeruginosa;[31] Aquifex aeolicus,[42] 
Leptospira serovar[41] and 53 H. pylori strains;[33,40] LpxA and 
LpxD were experimentally confirmed as vital for viability 
of  P. Aeruginosa.[43] In latest, lpxB gene in Acinetobacter 
baumannii was reported as a potential therapeutic target.[44] 
Then, LpxD was reported as an attractive antibacterial 
target along with the development of  experimental 
inhibitors and peptides to this chemically validated target 
in E. coli.[45,46] Lipid A 1‑phosphatase, LpxE and LpxH were 
also identified as drug targets in in E. coli.[47,48] However, 
many Gram‑negative bacteria encode LpxI has no sequence 
similarity to LpxH but produce the same products by an 
alternative route, for instance Caulobacter crescentus.[49]

LpxK as an essential target responsible for Kdo(2)‑lipid‑A, 
a conserved substructure of  LPS and it plays crucial roles 
in survival and interaction with host organisms.[47,50] LpxL 
acyltransferase was determined as a target required for 
normal growth and penta‑acylation of  lipid A in Neisseria 
meningitides, Pseudomonas putida, Burkholderia cenocepacia 
and K. Pneumonia.[51‑55] Lipid‑A acyltransferase LpxM 
possessed a dual activity mechanism is an important for the 
pathogenicity and biological activity of  pathogenic E. coli 
strain, therefore, which indicate LpxM as a vital target 
for antimicrobial design.[56] In a nutshell, all these enzyme 
targets were identified but not all nine enzymes are present 
in all Gram‑negative bacteria and some genes were arisen 
form gene duplication events. The common targets LpxB, 
LpxC, LpxD, GmhA, KdtA and RfaE2 (ADP‑heptose 
synthase) were reported for Leptospira interrogans serovars 
Copenhageni and Lai.[41]

Drug targets from core‑oligosaccharide
Core‑oligosaccharide is essential for the virulence and 
antibiotic resistance. Moreover, it is highly conserved in 
Gram‑negative bacteria. Thus, it is suitable to target the 
pathway to explore potential common drug–drug targets 
against the bacterial species or strains.[33] Target proteins 
KdsA, KdsB1, GmhA, KdtA and RfaE2 (ADP‑heptose 
synthase) from core region of  LPS were also reported 
for Leptospira interrogans serovars Copenhageni and 
Lai.[41] Interestingly, kdtA gene of  Chlamydia pneumonia 
was preferred as a target in detection of  human aortic 
tissue disease.[57] However, kdtA role of  Francisella tularensis 
that it is not obviously expressed at the surface, avirulent 
and elicited partial protection[58] KdsA, KdsB, GmhA, 
HldE and KdtA were screened as drug targets from 
the outer and inner core of  LPS.[33,41] KdsA, KdsB and 
GmhA were proposed as common drug targets for H. 
pylori, Chlamydophila pneumonia and Porphyromonas gingivalis, 
these proteins were also separately identified as potential 
conserved drug targets for 53 H. pylori strains.[40,59]

Drug targets from O‑antigen
The conservation of  this initiating reaction of  the O‑specific 
antigen biosynthesis could provide an excellent opportunity 
as potential drug target to develop inhibitors towards LPS 
biosynthesis.[1] The wecA and waaL mutant strains of  H. 
pylori contain no O‑antigens in LPS structure.[30] Moreover, 
O antigen mutation may adversely affect selected type IV 
secretion systems, thereby which indicates the significance 
of  the O antigen for the bacterial survival. This target as an 
important vector while in mutant condition in P. aeruginosa.[60] 
The initiating enzyme (WecA) was reported with important 
catalytic site residues and a putative reductase DmhB of  
Yersinia pseudotuberculosis as indispensable therapeutic targets 
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to inhibit further glycan synthesis.[61,62] Other studies stated 
that mutant WaaL causes the modification of  PG synthesis 
too and impairs the function of  PG layer, which thereby 
indicating the significance of  this enzyme.[63]

The experimental approaches had also been reported the 
LPS as an indispensable target source for antimicrobial 
compound discovery apart from screening and identifying 
drug targets through computational approaches. For 
instance, LpxC was experimentally allowed to drug design 
and development processes. As a drug target, LpxC history 
had begun since early 1980s even before the enzyme 
discovery and consequently LpxC had become the focus of  
target‑based antibacteriacidal discovery projects more than 
20 years in several pharmaceutical and academic research 
groups. One such the antibacterial discovery research 
group at Merck Research Laboratories had screened a 
library of  chemical compounds using a galE mutant of  
Salmonella and measured LPS biosynthesis experimentally 
by monitoring incorporation of  radiolabelled galactose into 
bacteria.[64] Despite intense effort in target identification, 
yet to focus on potential inhibitor design and approve the 
novel molecules targeting LPS for therapeutic use because 
no drug has advanced yet beyond phase I clinical trials. In 
case of  LpxC, eventhough experimentally good drug target, 
merely, one drug ACHN‑975 against LpxC has yet reached 
human studies, but no drug has advanced yet beyond phase 
I clinical trials. Later, it was discontinued as well due to local 
inflammation and toxicity signals found in in vivo studies.[64,65] 
Similarly, a trial for LpxC inhibitor RC‑01 was also recently 
stopped on safety grounds.[66] Moreover, another Phase 
III clinical trial of  the novel P. aeruginosa‑specific LptD 
inhibitor murepavadin was terminated due to challenges 
of  unexpected toxicity of  a new chemical in acute kidney 
injury.[67] Some other experimental results which indicated 
that waaL is a functionally one of  the gene clusters for 
the LPS synthesis as its involvement in the O‑antigen side 
chains to stress adaption and virulence in E. tarda as well 
as reported it as a potential target against this bacterium.[68]

In a capsule, despite LPS being a good target identified 
even from in silico to in vivo studies, toxicity of  the used 
chemical substance is becoming a major challenge in 
potential therapeutics development. Therefore, this article 
summarises the LPS synthesis and also highlights the drug 
targets indispensable for drug design, thereby significance 
of  growing body of  knowledge, as well as experience 
which could help to overcome such current hurdles in the 
translational health research on LPS biology.[64,66]

The most Gram‑negative bacteria show the unique 
characteristic of  possessing the LPS in cell wall unlike 

Gram‑positive bacteria. The LPS is the main component 
of  the OM serves as a permeability barrier for many 
antibiotics. It plays a significant role during host–pathogen 
interactions and becomes a causative factor of  chronic 
infection. The alterations in the LPS during chronic 
infection may lead to additional feature of  adhesion, 
colonisation, host immune evasion and adaptation to the 
host milieu. It comprises three portions – lipid A, the 
core‑oligosaccharide and O antigen synthesised through 
enzymatic Raetz pathway. LPS‑mediated virulence 
positioned in the endotoxic activity of  lipid A, the core and 
O antigen part to provide resistance against host defense 
mechanisms. Genetic modifications of  LPS lead to the 
establishment of  infection, host immune evasion or lead 
to the inhibition of  the host complement system.[19] Even 
though, these bacterial species or strains are different, 
the LPS is found to be common target. Thereby, LPS is 
clearly an attractive broad‑spectrum therapeutic target for 
the development of  novel antimicrobials,[1] however, the 
unique conserved targets (enzymes) without alternative way 
to synthesise the same product for the LPS biosynthesis 
are indispensable. Hence, these common target enzymes 
from lipid‑A, the core and O antigen involved in LPS 
biosynthesis could open the door to various new avenues 
for antimicrobial therapy with novel chemical probes 
against multidrug resistance superbugs.
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