

Between 5% and 10% of patients admitted to hospitals acquire one or more infections, based on reporting data largely from developed countries. In the USA, it is reported that 1 out of every 136 hospital patients becomes seriously ill as a result of acquiring an infection in the hospital. It is estimated that in developing countries (including India) the risk of Healthcare Associated Infections (HAI) is 2 to 20 times higher than in developed countries. In India, indiscriminate use of antibiotics both in community settings and in hospital settings contributes to development of antibiotic resistance. Further there is need for robust reporting of HAI in India. This 'doubleedged-sword' of indiscriminate antibiotic use and lack of reporting of healthcare associated infections needs to be addressed. The Director-cum-Vice Chancellor of SVIMS Dr. T.S.Ravikumar announced that SVIMS is taking a step forward to contribute in containing HAI in India. Adapting international guidelines (eg WHO, CDC) SVIMS is invoking a ten pronged strategy. One key component is 'Antimicrobial Stewardship', which aims to optimize antibiotic use among patients in order to reduce antibiotic resistance, improve patient outcomes and safety and ensure cost effective therapy. Hon'ble Health Minister of Andhra Pradesh, Dr. Kamineni Srinivas garu released the first edition of "SVIMS Antimicrobial Stewardship pocket quide" on 12.07.2016. This is revised 6 monthly and new editions are released every January and July to inform all health care personnel (doctors, nurses, and allied health staff) of pathogen surveillance, antimicrobial use, infection control measures and outcomes. This programme is jointly monitored by Hospital Infection Control Committee and SVIMS QualityCouncil.

CONTENTS

- 1. Ten Pronged Strategy
- 2. Hospital Infection Control (HIC) Committees
- 3. HIC Terms of Reference
- 4. Hand Hygiene
- 5. Outcomes & KPIs for Infection
 - i) VAP
 - ii) CLABSI
 - iii) CAUTI
 - iv) SSI
 - v) Standardized infection ratio (SIR)
- 6. Antimicrobial Stewardship Hand Pocket Guide 4th Edition

1) Healthcare Associated Infections (HAI): SVIMS Ten Pronged Strategy

	Strategy	Implementation
1	Reducing Inappropriate Device usage	Education by SQC
2	Hand hygiene and Barrier precaution	HICC, SQC group
2	Antimicrobial stewardship	Release pocket guide on 12.07.2016
4	Leadership support at highest level	Director involvement Engineering AP Heath Ministry
5	Implementing culture of safety	SQC launch
6	Financial incentives & regulatory oversight	Consideration by AP Health Ministry
7	System based appropriate protocol and checklist	Ongoing development
8	Better care of technology	BME monitoring
9	Public reporting of credible data	Launch 12.07.2016
10	• Partnership	Explore with CDC, WHO

SQC = SVIMS Quality Council

HICC = Hospital Infection Control Committee

BME = Biomedical Engineering

CDC = Center for Disease Control

WHO = World Health Organization

2) Hospital Infection Control (HIC) Committees

HIC Committee Members:

- HICC Chairman Dr T.S.Ravikumar, Director cum Vice Chancellor
- HICC Co-Chairman Dr. Aloksachan, Medical Superintendent
- Member Secretary- Dr K.K.Sharma, HOD of Microbiology
- Hospital Infection Control Officers -Dr.R.Jayaprada, Dr.N.Ramakrishna.
- Senior Consultant- Dr A. Mohan, Senior professor& HOD of Medicine-Member
- All the heads of the departments- Members
- Nursing Superintendent- Mrs.C.Sunitha-Member
- Infection Control Nurses- V.Karpugam, D.Redemma, A.Shobharani, N.Bayamma & all 47 Head nurses-Members

Operating theatre Incharge- Mrs Shakira- Member

- In-charge of Central Sterile Supplies Department- Mrs.C.Sunitha-Member
- Health inspector Mrs. A.Umamaheswari-Member
- In-charge of pharmacy- Dr. P.Subramanyam-Member
- In-charge of hospital linen- Mrs. C.Sunitha-Member
- In-charge of hospital laundry- D.Indiramma-Member
- In-charge of hospital kitchen- Mrs M.Sunitha-Member
- Epidemiologist- Dr Ravishankar, Assistant professor, Social & Preventive medicine-Member
- Member Secretary- Dr K.K.Sharma, HOD of Microbiology
- Hospital Infection Control Officers Dr. R. Jayaprada, Dr. N. Ramakrishna.
- Infection Control Nurses- V. Karpugam, D.Redemma, A. Shobharani, N.Bayamma & all 47 Head nurses- Members
- Infection Control technicians: Mr P.Yashodhar, Mr. P.Rammurthy

3) HIC Terms of Reference

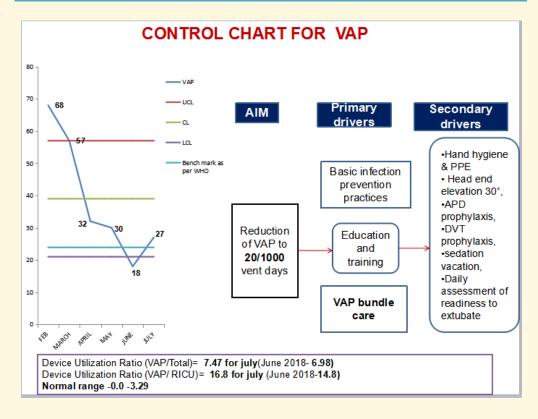
- 1. Health care associated infections
 - i) VAP
 - ii) CLABSI
 - iii) CAUTI
 - iv) SSI
 - v) Standardized infection ratio (SIR)
- 2. Bed sore analysis
- 3. O.T. surveillance (Monthly)
- 4. Blood bank surveillance
- 5. Environmental surveillance (water& air) (Monthly)
- 6. Hand hygiene
- 7. Dialysate fluid testing
- 8. Needle-stick injuries incidence
- 9. Multi drug-resistant organisms (MDRO's) Surveillance
- 10. Outbreak investigation
- 11. Biomedical waste management
- 12. High end antibiotic monitoring
- 13. AMR surveillance
- 14. HBs Ag antibody titre testing
- 15. Endotoxin (LAL) assay for Dialysate fluid & water

4) Hand Hygiene

- The organization adheres to standard precautions at all times regarding the use of PPE, prevention of sharp injury etc.
- Hand Hygiene guidelines are followed in all areas of the hospital-Posters regarding Hand Hygiene are available.
- Specific precautions are being followed when required.
- Safe Injection and Infusion practices are followed.
- Cleaning, disinfection and sterilization practices being followed

Steps of Procedure Hand Washing

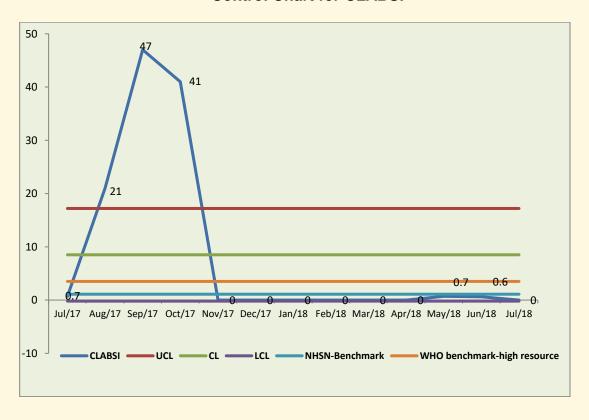
Surgical Hand Wash (3-5mts)



5) Outcomes & KPIs for Infections

i) Ventilator Associated Pneumonia (VAP)

Parameters	All Ventilated patients	RICU
Total no. of infections - July	22	11
Total ventilator days for July	814 (109 patients)	386 (23 patients)
July 2018	27/1000 Days	28.5/1000 Days
June 2018	18/1000 Days	24.8/1000 Days
May 2018	29.5/1000 Days	30.3/1000 Days
April 2018	32/1000 Days	22.6/1000 Days
March 2018	57/1000 Days	48 /1000Days
February 2018	68/1000 Days	48/1000 Days

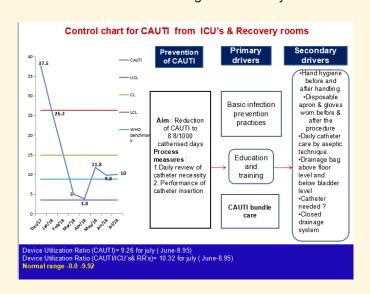


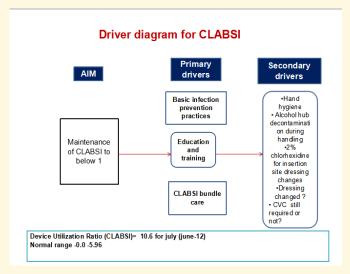
ii) Central Line Associated Blood Stream Infection Rate (CLABSI)

PARAMETERS	CLABSI rate
no of infections-July	Zero
total no of line days for July	1876 Days(177 patients)
CLABI rate July 2018	Zero
CLABI rate June 2018	0.6
CLABI rate May 2018	0.7
CLABI rate April 2018	Zero
CLABI rate March 2018	Zero
CLABI Rate February 2018	Zero

Two blood cultures has grown different organisms (Acinetobacter, Enterococcus spp). Rest 17 were sterile.

Control Chart for CLABSI

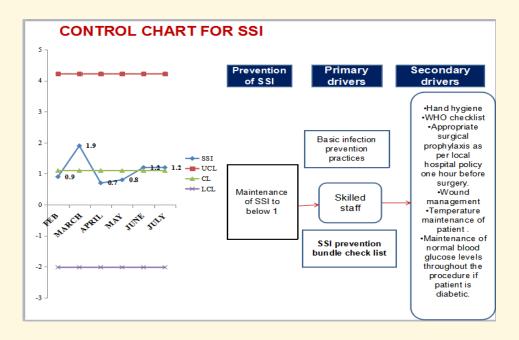



iii) CAUTI

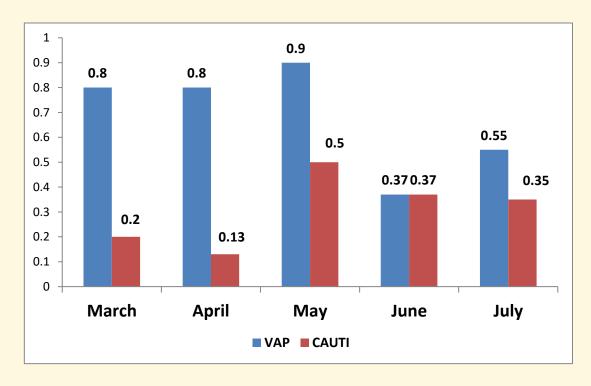
CAUTI from ICU's & Recovery rooms

PARAMETERS	RICU AND MICU,CTRR,GS ICU, ANCU patients
No. of Infections -July	09
Total no of Catheterized days for July	898(87Patients)
July 2018	10/1000 days
June 2018	9.8/1000 Days
May 2018	11.8/1000 Days
April 2018	3.8/1000 days
March 2018	05/1000 days

Average CAUTI the year 2016 -26.5/1000 Average CAUTI the year 2017 -5.7/1000



iv) SSI


SSI Rate

PARAMETERS	
No. of infections-July	15
Total Number of Surgeries for July	1210
SSI Rate - July 2018-1210	1.2
SSI Rate - June 2018-1082	1.2
SSI Rate - May 2018-593	0.8
SSI Rate - April 2018-1012	0.7
SSI Rate - March 2018-467	1.9
SSI Rate - February 2018-543	0.9
SSI Rate - January 2018-521	2.5

v) Standardized Infection Ratio (SIR)

Trends of Standardized Infection Ratio for the Year 2018

SVIMS ANTIMICROBIAL STEWARDSHIP POCKET GUIDE JUL 2018 - DEC 2018

5thEdition

Editors

Dr T.S.Ravikumar (Director-cum-VC)

Dr R.Jayaprada

Dr N.Ramakrishna

Dr K.K.Sharma

Dr. KAMINENI SRINIVAS

Minister for Health, Medical Education & Family Welfare, Govt. of Andhra Pradesh Hyderabad.

Office Address:
Room No. 301,
3rd Floor, J-Block,
A.P. Secretariat,
Hyderabad - 500 022.
Office Telephones Nos.:
040-23455976
040-23451135

Message from Health Minister

It is very timely that Sri Venkateswara Institute of Medical sciences is making strides in controlling Health Care Associated Infections and innovating Antimicrobial Stewardship. Congratulations to the institute and I am proud that my Government will be at the forefront of tackling this emerging healthcare menace of misuse / overuse of antibiotics and drug resistance.

Dr. Kamineni Srinivas garu

Hon'ble Minister for Health Medical and Family Welfare

Govt., of Andhra Pradesh

Preface

Healthcare Associated Infections (HAI)

Among patients admitted to hospitals 5%-10% acquire one or more infections, based on reporting data largely from developed countries. It is estimated that in developing countries the risk of HAI is 2 to 20 times higher than in developed countries. In India, indiscriminate use of antibiotics both in community settings and in hospital settings contributes to development of antibiotic resistance. Further there is need for robust reporting of HAI in India. The Directorcum-Vice Chancellor of SVIMS Dr. T.S.Ravikumar announced that SVIMS is taking a step forward to contribute in containing HAI in India. Adapting international guidelines (e.g. WHO, CDC), SVIMS is invoking a ten pronged strategy. One key component is 'Antimicrobial Stewardship', which aims to optimize antibiotic use among patients in order to reduce antibiotic resistance, improve patient outcomes and safety and ensure cost effective therapy. This pocket guide of SVIMS Antimicrobial Stewardship (fist Edition) is released on 12-7-2016 by Hon'ble Health Minister of Andhra Pradesh, Dr. Kamineni Srinivas garu. This will be revised 6 monthly and new editions will be released every January and July to inform all health care personnel (doctors, nurses, and allied health staff) of pathogen surveillance, antimicrobial use, infection control measures and outcomes. This programme is jointly monitored by Hospital Infection Control Committee and SVIMS Quality Council.

Dr. T.S.RavikumarDirector cum Vice Chancellor

From the desk of editors......

Greetings from Infection Control team,

- Antimicrobial resistance (AMR) results in increased morbidity, mortality, and costs of healthcare
- Prevention of the emergence of resistance and the dissemination of resistant microorganisms will reduce these adverse effects and their attendant costs.
- Predominant isolates in ICU's were *Klebsiella* followed by *Acinetobacter, Escherichia coli and Pseudomonas spp.*
- In ICU's empirical choice of antibiotic in our institute is Cefaperazone + sulbactam.
- Based on Gram staining report prophylactic drug of choice for gram negative bacilli is Cefaperazone + sulbactam, and for gram positive bacteria is Linezolid in all ICU's.
- We therefore urge everyone to restrict the use of antimicrobial agents.

R. Jayaprada
InfectionControlOfficer
Hospital Infection Control Committee

T.S.Ravikumar
Director cum ViceChancellor

INDEX

- 1. Hand Hygiene-Steps
- 2. Hand HygieneCompliance
- 3. Trends of Multidrug Resistance from Jan 2018 Jun 2018
- 4. Rates of Ventilator Associated Pneumonia (VAP), Catheter Associated Urinary tract Infection(CAUTI)
- 5. Antibiotic policy
- 6. Surveillance-Critical care area surveillance, Environmental surveillance, Sterilitycheck of Blood bags, Dialysis fluid &Drinking water Zonetesting.
- 7. Biomedical WasteManagement

Steps of Procedure Hand Washing

Courtesy: WHO/CDC

Surgical Hand Wash (3-5mts)

Courtesy: WHO/CDC

Key messages......

- Predominant isolates in ICU's were Klebsiella followed by Acinetobacter, Pseudomonas spp and Escherichia coli.
- In ICU's empirical choice of antibiotic in our institute is Cefaperazone+sulbactam. In case of suspicion of *Pseudomonas* infections, empirical choice of antibiotic is Piperacillin+ Tazobactam.
- Based on Gram staining report prophylactic drug of choice for gram negative bacilli is Cefaperazone+sulbactam, and for gram positive bacteria is Linezolid in all ICU's.

Organism wise Anti Microbial Resistance pattern (Gram negative bacilli) (%)

S.No	Organisms	AK	CFS	CTX	CF	COT	G	M	PTZ	Pb	CTZ
1	E.coli(1646)	16	20	89	65	64	27	11	22	0.4	-
2	Klebsiella (602)	51	57	94	42	78	55	40	55	2	-
3	Acinetobacter(279)	49	44	92	63	67	53	47	68	1	-
4	Pseudomonas(270)	30	57	-	77	-	51	77(Imp)	46	Nil	87
5	Enterobacter (109)	31	37	83	37	63	39	18	42	2	-

AK-Amikacin, CTX-Cefotaxime, CFS-Cefaperazone +Sulbactum, CF-Ciprofloxacin, COT-Cotrimaxazole, G-Gentamicin, I-Imipenem, PTZ-Piperacillin+ Tazobactam, Pb-Polymixin-B, CTZ-Ceftazidime

Anti Microbial Resistance (AMR) pattern of Isolates in ICU's (%)

S.No	Organisms	AK	CFS	CTX	CF	COT	G	M	PTZ	Pb	CTZ
1	Klebsiella (66)	55	56	97	42	89	50	39	52	3	-
2	Acinetobacter(43)	67	51	93	67	72	70	53	70	2	
3	Pseudomonas(25)	56	76	-	84	-	56	88(Imp)	52	Nil	92
4	E.coli (19)	32	53	100	32	84	32	37	58	Nil	-

AK-Amikacin, CTX-Cefotaxime, CFS-Cefaperazone +Sulbactum, CF-Ciprofloxacin, COT-Cotrimaxazole, G-Gentamicin, I-Imipenem, PTZ-Piperacillin+ Tazobactam, Pb-Polymixin-B, CTZ-Ceftazidime

Anti Microbial Resistance (AMR) pattern of gram negative Isolates (%)

Organism	AK	CFS	CTX	CF	СОТ	G	M	PTZ	Pb
Gram negative bacilli	28	34	89	53	62	38	23	36	1.7

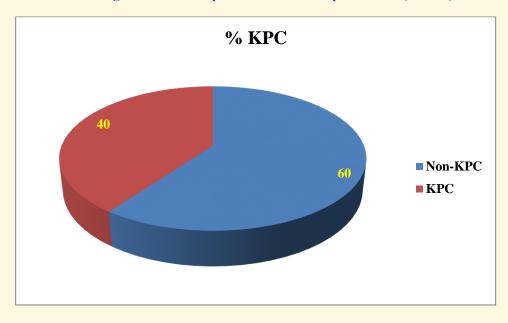
AK-Amikacin, CTX-Cefotaxime, CFS-Cefaperazone +Sulbactum, CF-Ciprofloxacin, COT-Cotrimaxazole, G-Gentamicin, I-Imipenem, PTZ-Piperacillin+ Tazobactam, Pb-Polymixin-B, CTZ-Ceftazidime

Anti Microbial Resistance (AMR) spectrum of S.aureus, CoNS and Enterococcus spp (%)

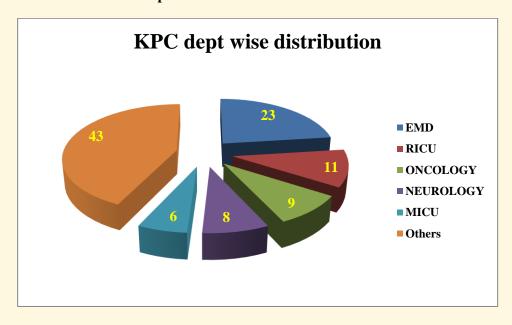
S.No	Organisms	Ampp	Cef	Cip	E	CD	COT	G	LZ	P	VA	TE
1	S.aureus	96	66	64	64	46	61	22	4	96	1.4	13
2	Coagulase negative staphylococcus	95	71	65	68	47	60	18	4	95	1.5	17
3	Enterococcus spp	83	-	91	92	-	-	-	3	84	5	38

Amp-Ampicillin, Cef-Cefoxitin, Cip-Ciprofloxacin, E-Erythromycin, CD-Clindamycin, COT-Cotrimaxazole, G-Gentamicin, LZ-Linezolid, P-Penicillin, VA-Vancomycin, TE-Tetracycline

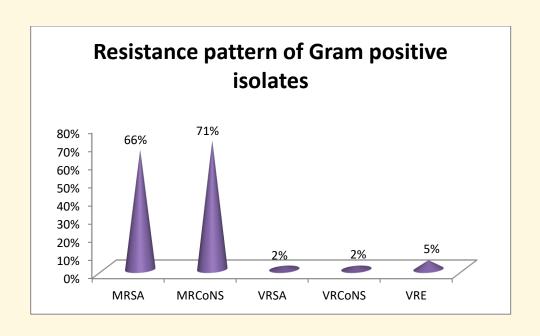
Percentage of VRE: 5%

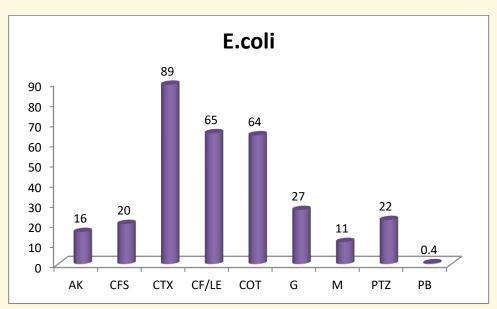

Percentage of MRSA: 66%,

Percentage of MRCoNS: 71%,


Percentage of VRSA: 1.4%.

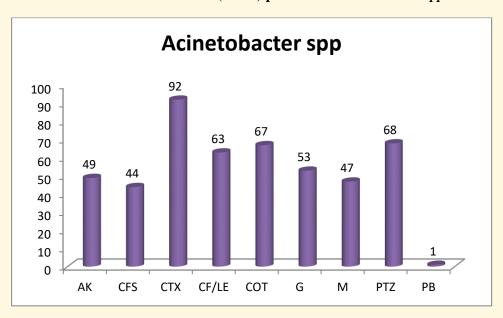
Percentage of VRCoNS: 1.5%.


Percentage of Klebsiella pneumoniae Carbapenemases (KPC's)

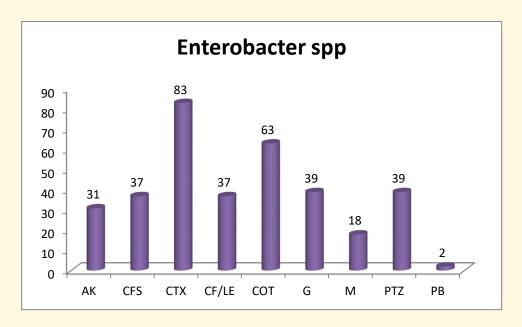

Department wise distribution of KPC

Antimicrobial resistance (AMR) spectrum of Staphylococcus aureus, Coagulase negative Staphylococci (CONS), Enterococcus

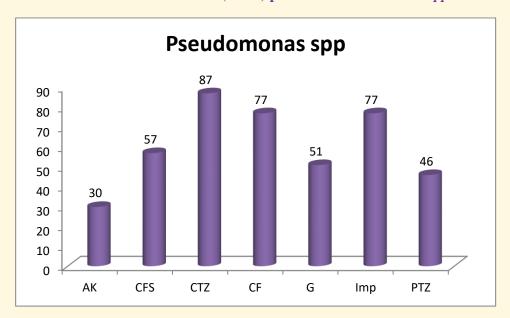
Antimicrobial resistance (AMR) patterns of Escherichia .coli


AK-Amikacin, CTX-Cefotaxime, CFS-Cefaperazone +Sulbactum, CF-Ciprofloxacin, COT-Cotrimaxazole, G-Gentamicin, I-Imipenem, PTZ-Piperacillin+ Tazobactam, Pb-Polymixin-B, CTZ-Ceftazidime

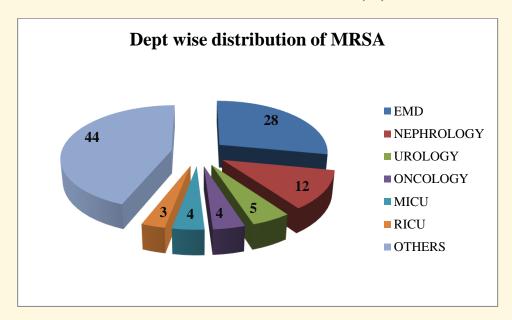
Antimicrobial resistance (AMR) patterns of Klebsiella spp


AK-Amikacin, CTX-Cefotaxime, CFS-Cefaperazone +Sulbactum, CF-Ciprofloxacin, COT-Cotrimaxazole, G-Gentamicin, I-Imipenem, PTZ-Piperacillin+ Tazobactam, Pb-Polymixin-B, CTZ-Ceftazidime

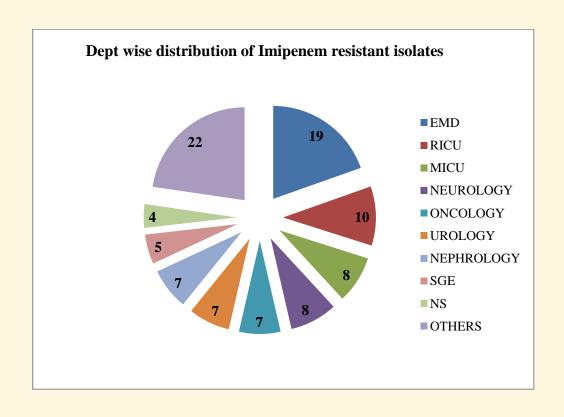
Antimicrobial resistance (AMR) patterns of Acinetobacter spp


AK-Amikacin, CTX-Cefotaxime, CFS-Cefaperazone +Sulbactum, CF-Ciprofloxacin, COT-Cotrimaxazole, G-Gentamicin, I-Imipenem, PTZ-Piperacillin+ Tazobactam, Pb-Polymixin-B, CTZ-Ceftazidime

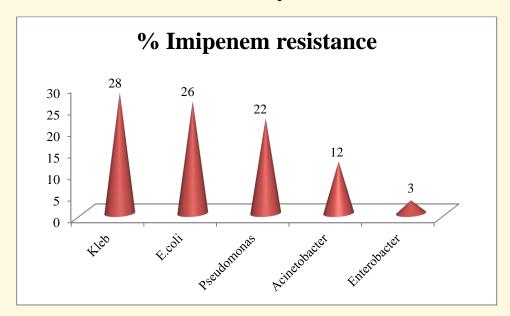
Antimicrobial resistance (AMR) patterns of Enterobacter species

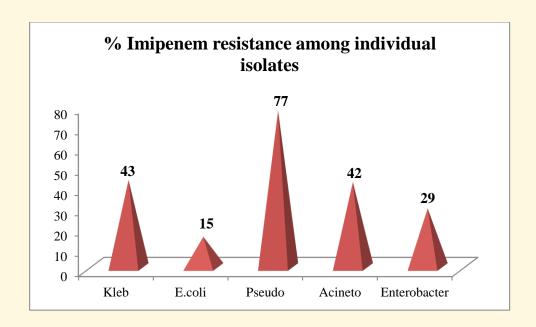

AK-Amikacin, CTX-Cefotaxime, CFS-Cefaperazone +Sulbactum, CF-Ciprofloxacin, COT-Cotrimaxazole, G-Gentamicin, I-Imipenem, PTZ-Piperacillin+ Tazobactam, Pb-Polymixin-B, CTZ-Ceftazidime

Antimicrobial resistance (AMR) patterns of Pseudomonas spp

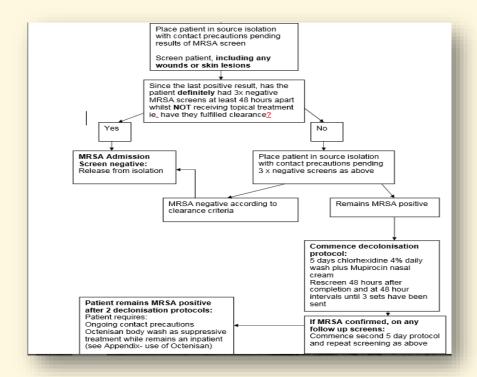


AK-Amikacin, CTX-Cefotaxime, CFS-Cefaperazone +Sulbactum, CF-Ciprofloxacin, COT-Cotrimaxazole, G-Gentamicin, I-Imipenem, PTZ-Piperacillin+ Tazobactam, Pb-Polymixin-B, CTZ-Ceftazidime

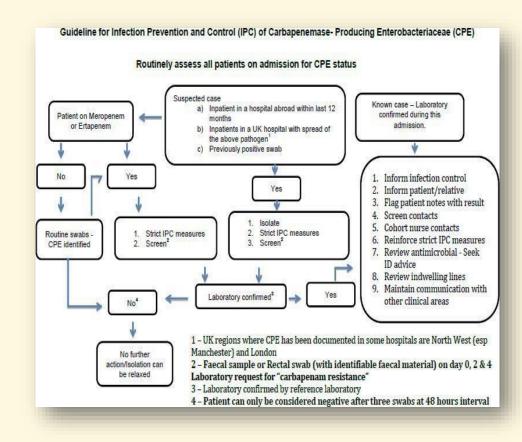

Ward wise distribution of MRSA (%)


Dept wise distribution of Imipenem resistance (%)

Contribution of individual imipenem resistant isolates



Percentage of imipenem resistance among individual isolates


- ➤ Most common gram negative isolates were *Escherichia coli*, *Klebsiella*, *Acinetobacter spp and Pseudomonas*.
- Escherichia coli isolates were highly resistance to cefotaxime(89%), ciprofloxacin(65%), Cotrimaxazole(64%) and sensitive to Amikacin(84%), Cefaperazone+sulbactam(80%), Gentamicin(73%), Piperacillin +tazobactam(78%), Meropenem(89%) and Colistin/Polymixin B(99.6%).
- ➤ Klebsiellae isolates were highly resistance to cefotaxime (94%), Amikacin (51%), Gentamicin (55%), Cotrimaxazole (78%), Cefaperazone+sulbactam (57%) Piperacillin +tazobactam (55%) and sensitive to ciprofloxacin/Levofloxacin (58%), Meropenem (60%) and Colistin/Polymixin B(98%).
- ➤ Acinetobacter spp isolates were highly resistance to cefotaxime (92%), ciprofloxacin (63), Cotrimaxazole (54%), Amikacin (67%), Gentamicin (53%), Piperacillin +tazobactam (68%) and sensitive to Meropenem (53%), Cefaperazone+sulbactam (56%), and Colistin/Polymixin B (99%)
- ➤ Pseudomonas spp isolates were highly resistance to ciprofloxacin (77%), ceftazidime (87%),Imipenem(77%),Cefaperazone+sulbactam(57%),Gentamicin(51%),and sensitive to Amikacin(70%), Piperacillin +tazobactam(54%) and Colistin/Polymixin B(100%).
- ➤ Most of the Gram negative isolates were shown highly resistance to cephalosporins (89%), cotrimaxazole (62%), ciprofloxacin (53%).
- ➤ On the other hand, Gram negative isolates were shown sensitivity to cefoperazone+sulbactum (66%), aminoglycosides (72%), Meropenem(77%), and Polymixin B(98.3).
- ✓ Screening of health care workers (HCW) for MRSA should be done as MRSA(Methicillin resistance Staphylococcus aureus) percentage was 66 &Methicillin resistance Coagulase negative Staphylococcus percentage was 71, and these isolates are predominantly from emergency and Nephrology departments. HCW's must be treated for the same.
- ✓ S.aureus has show high resistance against ciprofloxacin (64%),erythromycin(64%), Clindamycin(46%), and penicillins(96%).
- ✓ VRE (vancomycin resistance Enterococci) percentage was 5.
- ✓ Imipenem resistance was noted high in *Pseudomonas* (77%) followed by Klebsiellae (43%), *Acinetobacter* (42%) *Enterobacter* (29%) and E.coli (15%). So cautious prescription of carbapenems required.

Flow diagram for known MRSA positive patients

Routinely assess all patients on admission for CPE status

Guideline for Infection Prevention and Control (IPC) of Carbapenemase-Producing Enterobacteriaceae (CPE)

Revision of Antibiotic policy as per WHO 2016 guidelines:

As part of the review of antibacterial agents, a new categorization of antibacterial agents into three groups was proposed:

- o ACCESS first and second choice antibiotics for the empiric treatment of most common infectioussyndromes;
- WATCH antibiotics with higher resistance potential whose use as first and second choice treatment should be limited to a small number of syndromes or patient groups;and
- o RESERVE antibiotics to be used mainly as 'lastresort' treatment options

Access group antibiotics									
Beta-lactam medicines		Other antibacterials							
amoxicillin	cefotaxime*	Amikacin	Gentamicin						
amoxicillin + clavulanic acid	ceftriaxone*	azithromycin*	Metronidazole						
ampicillin	Cloxacillin	Chloramphenicol	Nitrofurantoin						
benzathinebenz ylpenicillin	Phenoxymethylpenicill in	ciprofloxacin*	spectinomycin (EML only)						
benzylpenicillin	piperacillin + tazobactam*	clarithromycin*	sulfamethoxazole + trimethoprim						
cefalexin	procaine benzyl penicillin	Clindamycin	vancomycin (oral)*						
cefazolin	meropenem*	Doxycycline	vancomycin (parenteral)*						
cefixime*									

Watch group antibiotics
Quinolones and fluoroquinolones e.g. ciprofloxacin, levofloxacin, moxifloxacin, norfloxacin
3rd-generation cephalosporins (with or without beta-lactamase inhibitor) e.g. cefixime, ceftriaxone, cefotaxime, ceftazidime
Macrolides e.g. azithromycin, clarithromycin, erythromycin
Glycopeptidese.g. teicoplanin, vancomycin
Anti-pseudomonalpenicillins with beta-lactamase inhibitor e.g. piperacillin +tazobactam
Carbapenems e.g. meropenem, imipenem + cilastatin
Penemse.g. faropenem

Reserve group ('last-resort') antibiotics						
Aztreonam	Fosfomycin (IV)					
4th generation cephalosporinse.g. cefepime	Oxazolidinones					
	e.g. linezolid					
5th generation cephalosporinse.g. ceftaroline	Tigecycline					
Polymyxins e.g. polymyxin B, colistin	Daptomycin					

Sri Venkateswara Institute of Medical Sciences Segregation of Biomedical Waste

Yellow	Red	Blue Card Board	White
(Non-Chlorinated Plastic Bags)	(Non-Chlorinated	Boxes	(Translucent Puncture
	Plastic Bags)		Proof Container)
Human Anatomical, Infectious Waste &	Contaminated Waste	Glassware	Waste Sharps Including
Cytotoxic Waste	(Recyclable)		Metals
		Broken or	
Human tissues, organs, body parts	Disposable items	discarded and	Needles
and foetus	Tubing	contaminate glass	Syringes with fixed
Items contaminated with blood,	Bottles	including	needles
body fluids like dressings, plaster	Intravenous tubes &	medicine vials and	Needles from needle tip
casts, cotton swabs	sets	ampoules except	cutter or burner
Bags containing residual or	Catheters	those	Scalpels
discarded blood and blood	Urine bags	contaminate with	Blades
components	Gloves	cytotoxic wastes	Any other contaminated
Antibiotics, cytotoxic drugs along	Syringes (without	<u>metallic body</u>	sharp object that may
with glass or plastic ampoules, vials	needles and fixed	<u>implants</u>	cause puncture and cuts
(with cytotoxic labelled bag)	needle syringes)		Contaminated sharps
Discarded disinfectants	Vaccutainers with		
Discarded linen, mattresses,	their needles cut		
beddings contaminated with blood			
or body fluid			
➢ Blood bags			
Laboratory culture, stocks or			
specimens of microorganisms			
Live or attenuated vaccines			

Black/ Green – General Garbage (domestic waste, papers, packaging material, left over food)

Biomedical Waste Management (BMW) RULES 2016

Category	Type ofwaste	Type of Bag/ container	Treatment/ Disposal options
Yellow	Human anatomical waste Animal anatomical waste	Yellow coloured	Incineration/ Plasma pyrolysis/ deepburial
	Soiledwaste	non chlorinated plasticbags	Incineration/ Plasma Pyrolysis/ deepburial/ autoclaving or hydroclaving+ shredding/mutilation
	Expired/ discarded medicines-pharmaceutical waste,cytotoxic drugs	Yellow coloured containers/ non chlorinated plastic bags	Incineration (cytotoxic drugs at temperature > 1200□C)
	Chemicalwaste	Yellow coloured containers/ non chlorinated plastic bags	Incineration or Plasma pyrolysis or Encapsulation
	Discarded linen contaminated with blood/ bodyfluids	Non- chlorinated yellow plastic bags / suitable packing material	Non- chlorinated chemical disinfection followedby incineration/ plasmapyrolysis
	Microbiology, other clinical lab waste, blood bags, live/attenuated vaccines	Autoclave safe plastic bag/container	Pre-treattosterilizewith non-chlorinated chemicals on-site asper NACO/WHOguidelines+Incineration
Red	Contaminated Waste(Recyclable)	Red coloured non- chlorinated Plastic bags or containers	 Autoclaving/ micro- waving/ hydroclaving + shredding Mutilation/ sterilization+ shredding. Treated waste sent to registered or authorized recyclers or for energy recovery or plastics to diesel or fuel oil or for road making,
White (Translucent)	Waste sharps including Metals	Puncture proof, Leak proof, tamper proof containers	 Autoclaving/dry heat sterilization+ shredding/ mutilation Encapsulation in metal container or cement concrete Sanitary landfill/ designated concrete waste sharppit
Blue	Glassware, Metallic body implants	 Glass test tubes Empty glass Bottles Contaminated glass bottles Broken glass ampoules containing discarded/Expired medicines except chemotherapeutic medicines Metallic body implants Reusable glass slide 	Disinfection (by soaking the washed glass waste after cleaning with detergent and Sodium Hypochlorite treatment)/ through autoclaving/ microwaving/ hydroclaving + recycling